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ABSTRACT

The sound radiated by isotropic turbulence is computed using inertial range scaling

expressions for the relevant two time and two point correlations. The result depends on

whether the decay of Eulerian time correlations is dominated by large scale sweeping or

by local straining: the straining hypothesis leads to an expression for total acoustic power

given originally by Proudman, whereas the sweeping hypothesis leads to a more recent

result due to Lilley.

* This research was supported by the National Aeronautics and Space Administration

under NASA Contract No. NAS1-19480 while the authors were in residence at the Institute

for Computer Applications in Science and Engineering (ICASE), NASA Langley Research

Center, Hampton, VA 23681-0001.

i



I. Introduction

The sound radiated by isotropic turbulence was �rst computed by Proudman1 very

shortly after the appearance of Lighthill's quadrupole theory2 of sound radiation from an

arbitrary stochastic velocity �eld. For the total acoustic power �p in the far �eld, Proudman

found

�p = ��
�u
c

�5
" (1)

where c is the speed of sound and � the density in the far �eld, " is the dissipation rate of

the isotropic turbulence, u is de�ned by

u2 =
2

3
K (2)

where K is the turbulence kinetic energy, and the presumably universal proportionality

constant �, the Proudman constant, was expressed in terms of the spatial correlation

function of the turbulence.

Proudman's calculation was re-examined by Lilley3 who noted that Proudman had in-

troduced approximations which suppress dependence on time correlations. This important

observation led to a modi�cation of Proudman's formula

�p = �0�
�
L
u

�4�u
c

�5
" (3)

where temporal properties appear through the frequency 
 which is de�ned so that the

time correlation function depends only on the product 
� , where � is the time di�erence.

In Eq. (3), L is the integral scale de�ned by L = u3=". By invoking a correction4 to the

quasinormal hypothesis suggested by Lighthill, Lilley also found that the proportionality

constant �0 depends on the 
atness of the single point velocity probability distribution

function. However, experimental evidence5 indicates that this correction is not large;

therefore, this e�ect will be neglected here.

In evaluating the integrals required by Lighthill's theory, Lilley substituted empir-

ical formulas for the relevant correlation functions, choosing in particular the two time

dependence to establish the far �eld sound spectrum found in numerical simulations by
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Sarkar and Hussaini.6 Lilley has argued7 that this procedure is reasonable since the tem-

poral covariance depends strongly on the large eddy contribution and therefore should be

accessible to direct numerical simulation.

In this letter, Lilley's calculation is repeated using Kolmogorov inertial range forms

appropriate to high Reynolds number turbulence. This procedure leads to expressions

for acoustic power which contain only universal inertial range quantities. An important

feature of Lilley's analysis is the dependence of sound emission on both Eulerian two time

and two point correlations. Whereas there is little doubt that the spatial correlations

must follow the Kolmogorov laws < u(x + r)u(x) >� r2=3 or equivalently E(k) � k�5=3,

there are two plausible alternatives for the time correlations8: temporal decorrelation

of the Eulerian velocity �eld can be caused either by sweeping by the largest energetic

scales or by local straining. A de�nitive discussion of these decorrelation mechanisms

and their physical basis is given by Kraichnan9; brie
y, under the straining hypothesis,

temporal decorrelation is a local property of inertial range scales, but under the sweeping

hypothesis, it is a nonlocal property of the energy containing range of scales. Although

the most recent discussions10;11;12 favor the sweeping hypothesis, we examine both cases

and �nd that the local straining hypothesis leads to Proudman's formula Eq. (1), but the

sweeping hypothesis leads, after an appropriate substitution for 
, to Lilley's formula Eq.

(3).

II. Evaluation of the sound radiated by isotropic turbulence

For time stationary sources, Lilley's approximate form3 of Lighthill's theory predicts

�p =
�

8�2c5

Z
dr U(r) (4)

where the integrand U is given by

U(r) =
@4

@�4

�
< u1(x+ r; t+ � )2u1(x; t)

2 > � < u2
1
>2

�
j�=0

�
@4

@�4
U(r; � ) j�=0 (5)
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where u1 is the velocity component in the direction of the line connecting the source and

observation point. The quantity U of Eq. (5) is evaluated in wavenumber space by using

the quasi-normal closure in the usual way to obtain

U(k; � ) =
4

5

Z
k=p+q

dpdq Q(p; � )Q(q; � ) (6)

where Q(k; � ) is the correlation function de�ned by

< ui(k; t + � )uj(k
0; t) > = Q(k; � )Pij(k)�(k + k0)

and

Pij(k) = �ij � k�2kikj

Following Lilley, we set k ! 0 in Eq. (6), corresponding to the far �eld approximation.

Then

�p =
(2�)3�

8�2c5
@4

@�4
4

5

Z
4�p2 dp Q(p; � )2 (7)

Now write the two time correlation as

Q(p; � ) = Q(p)r(p; � ) (8)

where

4�p2Q(p) = E(p) (9)

is the energy spectrum and r has the similarity form

r(p; � ) = r(��(p)) (10)

with

�(p) =

�
V p sweep

"1=3p2=3 strain
(11)

Whereas the decorrelation time ��1 is a local inertial range property under the straining

hypothesis, the sweeping hypothesis makes the decorrelation depend on the sweeping ve-

locity V , which is not an inertial range property, but an entirely independent property of

the energy containing range.
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Substituting Eqs. (8)-(11) in Eq. (7) leads to

�p =
1

5

�

c5
@4

@�4

Z
1

0

dp p�2E(p)2r(��(p))2 j�=0 (12)

Di�erentiating Eq. (12) under the integral sign,

�p =
1

5

�

c5

Z
1

0

dp p�2E(p)2R

�
V 4p4 sweep
"4=3p8=3 strain

(13)

where

R =
d4

d�4
r(�) j�=0= 2r(4)(0)r(0) + 6[r(2)(0)]2 (14)

is a universal inertial range constant.

The integrals in Eq. (13) will be evaluated assuming a truncated Kolmogorov inertial

range

E(p) =

�
CK"

2=3p�5=3 for p � k0
0 for p � k0

Both integrals exhibit power law divergence in the limit k0 ! 0: the integral for the

sweeping hypothesis diverges as k
�1=3
0

and the integral for the straining hypothesis diverges

as k
�5=3
0

. This divergence indicates as expected that sound generation is dominated by

contributions from the most energetic scales. De�ning the inertial range energy

K =

Z
1

k0

E(k) dk =
3

2
CK"

2=3k
�2=3
0

where CK is the Kolmogorov constant, we note that in the in�nite Reynolds number limit

in which k0 ! 0,

�p �

�
K1=2 sweep
K5=2 strain

Using these results, evaluation of the integrals in Eq. (9) leads to

�p = "
�u
c

�5��sweep(V=u)
4 sweep

�strain strain
(15)

For the proportionality constants, we obtain

�sweep =
3

5
RC

3=2
K

�strain =
9

25
RC

�1=2
K (16)
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The inertial range constant R may be di�erent for the straining and sweeping hypotheses,

but this fact has not been made explicit to simplify the notation.

The acoustic power given by Eq. (15) for strain evidently coincides with Proudman's

result Eq. (1). Lilley's formula Eq. (2) also reduces to Proudman's if the characteristic

frequency 
 is an inertial range property, for example if 
 � "=K. But if 
 is chosen to

be a sweeping frequency, say 
 � V=L, then Lilley's formula coincides instead with Eq.

(15) for sweep.

III. Evaluation of the Proudman constant

To evaluate the proportionality constant �strain, we use Kaneda's
13 result

r(�) = exp(�0:81��2=4) (17)

derived for a Lagrangian modi�cation of the direct interaction approximation in which

time correlations are dominated by local strain. In this case, R = 12:7 and therefore

�strain = 3:6

To evaluate the proportionality constant �sweep, we use Kraichnan's result
14 that the

time correlation function for the sweeping hypothesis is

r(�) =
J1(2�)

�
(18)

therefore R = 10. Substituting in Eq. (16),

�sweep = 6C
3=2
K = 12:0 (19)

Woodru� has noted15 that since the time correlation functions of Eqs. (17) and (18)

only enter Eq. (13) through their derivatives at zero, formulas for the constant R could

be obtained from Taylor series solutions of the Navier Stokes equations. By expressing

these derivatives in terms of single time moments without invoking quasi-normality, a

generalization of the Lighthill4 relation could be derived.
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To assess the agreement between the present theory and Lilley's, it is necessary to

compare values of �0(
L=u)4 and �sweep(V=u)
4. Table I contains representative values of

the �rst quantity; the Strouhal number is the factor St = 
L=u of Lilley's theory. St is

probably7 somewhat larger than 1.0. The value St = 1:25 which appears in Table I is an

upper bound, not an experimental or theoretical value. Refs. 3 and 5 attempt to extract

the parameters of Lilley's theory from isotropic turbulence data. In Ref. 6, the sound

radiated by isotropic turbulence was determined by numerical simulation; however, recent

reconsideration16 of this calculation suggests that the result may not be entirely reliable.

With St in the range 1.00-1.25, �0St4 takes values between 0.7 and 8.8.

Like the Strouhal number, the ratio V=u is essentially nonuniversal since it depends

on properties of the energy containing range. Table II contains data taken from a recent

survey17 of experiments with well de�ned inertial and energy containing ranges. The

experiments can be identi�ed from Ref. 17 through the value of Re�. The sweeping

velocity V is evaluated from the energy in the scales below the 5/3 range. The values

of 12(V=u)4 in Table II are generally within the range found in Table I. However, the

data of Table I matches the entire energy spectrum including the energy containing range,

whereas the present theory ignores the contribution of these scales to sound radiation. This

suggests that the theoretically computed value of �sweep in Eq. (19) might be somewhat

too large.7 In applying experimental results5;17 to an isotropic theory, we assume that the

overall energetics of possibly inhomogeneous and anisotropic turbulence does not di�er

greatly from ideal isotropic turbulence.

In both the present theory and Lilley's, the fourth power dependence on the external

parameters 
 and V is striking. In particular, the present theory predicts that decorre-

lation by the energy containing range strongly enhances the radiation of sound; as noted

previously, the sound radiated by the energy containing scales themselves has not been

included in the present calculation.
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IV. The acoustic power spectrum

Taking the Fourier transform of Eq. (12) leads to the formula for the acoustic power

spectrum

�p(!) �
�

c5

Z
1

0

dp p�2E(p)2r(�) � r(�) j�=!=� �
�1 (20)

where r(�) = r(!=�(p)) is the Fourier transform of the time correlation function de�ned

by Eq. (10) and * denotes convolution with respect to the variable �. By introducing the

change of variables q = !=�(p) in Eq. (20), we �nd

�p(!) �
�"

c5

�
"1=3V 13=3!�4=3 sweep
"5=2!�7=2 strain

(21)

The considerable di�erence in the scaling exponents might make an experimental test of

the sweeping and straining hypotheses possible. The spectral scaling for sweep in Eq. (21)

can be compared to the !�2 scaling3 which has been found to give a good description

of jet mixing noise.18 It should be noted that Proudman's theory1 does not provide an

expression for the acoustic power spectrum.

V. Conclusions

The calculation of sound radiation by isotropic turbulence has been considered from

the viewpoint of analytical theories of turbulence. The calculation is accordingly based

on universal inertial range descriptors of turbulence; empirical space and time correlation

functions are not used. The Proudman constant is expressed theoretically in terms of the

Kolmogorov constant, a time correlation constant, and various purely geometric factors.

The calculation shows a signi�cant e�ect of the behavior of Eulerian time correlations

on sound radiation. If decay of time correlations is dominated by local straining, then

sound radiation is given by Proudman's original formula1 and the acoustic power spectrum

follows an !�7=2 law; whereas the more plausible hypothesis that decay of time correlations

is dominated by sweeping by the largest energetic scales results in a formula much closer

to Lilley's3, and the acoustic power spectrum follows an !�4=3 law.
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TABLE I

�0 St �0St4

Ref: 3 3:2� 3:6 1:25 7:8� 8:8
Ref: 5 0:7� 2:7 1:25 1:7� 6:5

Ref: 6 2:6

TABLE II

Re� V=u 12(V=u)4

3180 :48 0:6

1450 :86 6:4
850 :65 2:2
540 :59 1:5
308 :84 5:9
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